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Abstract
Incremental processing is widely adopted in many applications, ranging from incremental view maintenance, stream comput-
ing, to recently emerging progressive data warehouse and intermittent query processing. Despite many algorithms developed
on this topic, none of them can produce an incremental plan that always achieves the best performance, since the optimal plan
is data dependent. In this paper, we develop a novel cost-based optimizer framework, called Tempura, for optimizing incre-
mental data processing. We propose an incremental query planning model called TIP based on the concept of time-varying
relations, which can formally model incremental processing in its most general form.We give a full specification of Tempura,
which can not only unify various existing techniques to generate an optimal incremental plan, but also allow the developer
to add their rewrite rules. We study how to explore the plan space and search for an optimal incremental plan. We evaluate
Tempura in various incremental processing scenarios to show its effectiveness and efficiency.
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1 Introduction

Incremental processing is widely used in data computation,
where the input data to a query is available gradually, and
the query computation is triggered multiple times each pro-
cessing a delta of the input data. Incremental processing is
central to database viewswith incremental viewmaintenance
(IVM) [3,14,20,33] and stream processing [1,5,16,37,47].
It has been adopted in various application domains such
as active databases [4], resumable query execution [12],
and approximate query processing [13,29,54]. New advance-
ments in big data systemsmake data ingestionmore real-time
and analysis increasingly time sensitive, which boost the
adoption of the incremental processing model. Here, are a
few examples of emerging applications.

Progressive Data Warehouse [49]. Enterprise data ware-
houses usually have a large amount of automated routine
analysis jobs, which have a stringent schedule and dead-
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line determined by various business logic. For example,
at Alibaba, daily report queries are scheduled after 12 am
when the previous day’s data has been fully collected, and
the results must be delivered by 6 am sharp before the
bill-settlement time. These routine analysis jobs are pre-
dominately handled using batch processing, causing dreadful
“rush hour” scheduling patterns. This approach puts pressure
on resources during traffic hours, and leaves the resources
over-provisioned and wasted during the off-traffic hours.
Incremental processing can answer routine analysis jobs pro-
gressively as data gets ingested, and its scheduling flexibility
can be used to smoothen the resource skew.

Intermittent Query Processing [45]. Many modern appli-
cations require querying an incomplete dataset with the
remainingdata arriving in an intermittent yet predictableway.
Intermittent query processing can leverage incremental pro-
cessing to balance latency for maintaining standing queries
and resource consumption by exploiting knowledge of data-
arrival patterns. For instance, when querying dirty data, the
data is usually first cleaned and then fed into a database. The
data cleaning step can quickly spill the clean data but needs
to conduct a time-consuming processing on the dirty data.
Intermittent query processing can use incremental process-
ing to quickly deliver informative but partial results to the
user, before delivering the final results on the fully cleaned
data.

A key problem behind these applications is how to gen-
erate an efficient incremental plan for a query. Previous
studies focused on various aspects of the problem, e.g., incre-
mental computation algorithms for a specific setting such
as [3,14,33], or algorithms to determine which intermedi-
ate states to materialize [39,45,55]. The following example
based on two commonly used algorithms shows that none of
them can generate an incremental computation plan that is
always optimal, since the optimal plan is data dependent.

Example 1 (Reporting consolidated revenue)

summary =
WITH sales_status AS (

SELECT sales.o_id, category, price, cost
FROM sales LEFT OUTER JOIN returns
ON sales.o_id = returns.o_id )

SELECT category, SUM(IF(cost IS NULL, price, -cost))
FROM sales_status GROUP BY category

In the progressive data warehouse scenario, consider a rou-
tine analysis job in Example 1 that reports the gross revenue
by consolidating the sales orders with the returned ones. We
want to incrementally compute the job as data gets ingested,
to utilize the cheaper free resources occasionally available in
the cluster.Wewant to find an incremental plan with the opti-
mal resource-usage pattern, i.e., carrying out as much early
computation as possible using cheaper free resources to keep
the overall resource bill low. This query can be incremen-
tally computed in different ways as the data in tables sales

and returns becomes available gradually. For instance, con-
sider two basic methods used in IVM and stream computing.

(1) A typical viewmaintenance approach (denoted asIM-1)
treats summary as views [14,20,21,54]. It always main-
tains summary as if it is directly computed from the data
of sales and returns seen so far. Therefore, even if a sales
order will be returned in the future, its revenue is counted
into the gross revenue temporarily. Figure1a shows the
execution plan using this approach. In Fig. 1, each verti-
cal line represents a relation that evolves over time and
each horizontal line represents a specific time point. At
time t1, the plan computes the left-outer join and aggre-
gation results. After the new data from t1 to t2 arrive,
the query plan computes the incremental left-outer join
and aggregation results. Finally, the results at t1 and the
incremental results from t1 to t2 of the aggregation are
combined to produce the final results.

(2) A typical stream-computing method (denoted as IM-2)
avoids such retraction [24,34,36,46]. It holds back sales
orders that do not join with any returns orders until
all data is available. Figure1b shows the execution plan
using this approach. At t1, the plan computes only the
aggregation results of an inner join instead of a left-
outer join. After the data from t1 to t2 arrive, the plan
incrementally updates the aggregation results of the inner
join. Next, the complete aggregation results of a left-anti
join are computed using all input data up to t2. Finally,
the results of inner join aggregation and left-anti join
aggregation are combined to produce the final results.
Clearly, if returned orders are rare, IM-1can maximize
the amount of early computation and thus deliver bet-
ter resource-usage plans. Otherwise, if returned orders
are often, IM-2can avoid unnecessary re-computation
caused by retraction and thus be better. (See Sect. 2.2 for
a detailed discussion.) This analysis shows that different
data statistics can lead to different preferred methods.

Since the optimal plan for a query given a user-specified
optimization goal is data dependent, a natural question is
how to develop a principled cost-based optimization frame-
work to support efficient incremental processing. To our
best knowledge and also to our surprise, there is no such
a framework in the literature. In particular, existing solu-
tions still rely on users to empirically choose from individual
incremental techniques, and it is not easy to combine the
advantages of different techniques and find the plan that is
truly cost optimal. When developing this framework, we
face more challenges compared to traditional query opti-
mization [18,43] (see Sect. 2.2): (1) Incremental query
planning requires trade-off analysis on more dimensions
than traditional query planning, such as different incremental
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Fig. 1 Comparison of incremental query plans produced by approach
IM-1and approach IM-2

computation methods, data arrival patterns, which states to
materialize, etc. (2) The plans for different incremental runs
are correlated and may affect each other’s optimal choices.
It is essential to jointly consider the runs across the entire
timeline.

In this paper, we propose a unified cost-based query opti-
mization framework, which allows users to express and
integrate various incremental computation techniques and
provides a turn-key solution to decide optimal incremental
execution plans subject to various objectives. We make the
following contributions.

– We propose a new theory called the TIP model on top of
time-varying relation (TVR) that formulates incremental
processing using TVR. The TIPmodeldescribes a formal
algebra for TVRs, which includes a definition of TVRs
on top of relations, semantics of querying on TVRs, and
basic operations on TVRs such as TVR difference and
merge operations (Sect. 3). This model serves as a theo-
retical foundation of our optimization framework.

– We provide a rewrite-rule framework under the TIPmod-
elto describe different incremental computation tech-
niques, and unify them to explore in a single search space
for an optimal incremental plan (Sect. 4). This frame-

work allows these techniques to work cooperatively, and
enables cost-based search among possible plans.

– We build a Cascade-style optimizer named Tempura. It
supports cost-based optimization for incremental query
planning based on the TIP model. We discuss how to
explore the plan space (Sect. 5) and search for an optimal
incremental plan (Sect. 6).

– We give a detailed specification on how to integrate Tem-
purainto a traditional optimizer (Sect. 7).

– We propose multiple techniques to improve the query
planning speed, such as template copying (Sect. 8.1), plan
space pruning (Sect. 8.2), and optimizations of the rule
engine (Sect. 8.3).

– We conduct a thorough experimental evaluation of the
Tempuraoptimizer in various application scenarios. The
results show the effectiveness and efficiency of Tem-
pura(Sect. 10).

This paper is an extended version of a conference
paper [50], with the following additional contributions:

– We give an in-depth description of how to integrate two
advanced incremental computation algorithms in Tem-
pura, namely outer-join view maintenance and higher-
order view maintenance (Sect. 4.2).

– We elaborate the description of how to choose the optimal
intermediate states to materialize, which is a critical step
in selecting an optimal plan (Sect. 6.3).

– We add a detailed specification on how to integrate Tem-
purainto a traditional Cascades-style optimizer (Sect. 7).

– We add multiple techniques to improve the query plan-
ning speed to make Tempurahave a comparable speed
as traditional optimizers while exploring a much bigger
plan space (Sect. 8).

– We expand the experiments to evaluate both the effective-
ness and query optimization speed of Tempurain more
scenarios (Sect. 10).

2 Problem formulation

In this section, we formally define the problem of cost-based
optimization for incremental computation. We elaborate on
the running example to show that execution plans generated
bydifferent algorithmshavedifferent costs.We then illustrate
the challenges.

2.1 Incremental query planning

Despite the different requirements in various applications,
a key problem of cost-based incremental query planning
(IQP) can bemodeled uniformly as a quadruple ( �T , �D, �Q, c̃),

where:
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– �T = [t1, . . . , tk] is a vector of time points when we can
carry out incremental computation. Each ti can be either
a concrete physical time, or a discretized logical time.

– �D = [D1, . . . , Dk] is a vector of data, where Di repre-
sents the input data available at time ti , e.g., the delta data
newly available at ti , and/or all the data accumulated up
to ti . For a future time point ti , Di can be expected data
to be available at that time.

– �Q = [Q1, . . . , Qk] is a vector of queries. Qi defines the
expected results that are supposed to be delivered by the
incremental computation carried out at ti . If there is no
required output at ti , then Qi is a special empty query ∅.

– c̃ is a cost function that we want to minimize.

The goal is to generate an incremental plan P = [P1, . . ., Pk]
where Pi defines the task (a physical plan) to execute at time
ti , such that (1) ∀1 ≤ i ≤ k, Pi can deliver the results defined
by Qi , and (2) the cost c̃(P) is minimized. Next we use a few
IQP scenarios to demonstrate how they can bemodeled using
the above definition.

Incremental View Maintenance (IVM-PD). Consider the
problem of incrementally maintaining a view defined by
query Q. Instead of using any concrete physical time, we
can use two logical time points �T = [ti , ti+1] to represent a
general incremental update at ti+1 of the result computed
at ti . We assume that the data available at ti is the data
accumulated up to ti , whereas at ti+1 the new delta data
(insertions/deletions/updates) between ti and ti+1 is avail-
able, denoted by �D = [D,ΔD]. At both ti and ti+1, we
want to keep the view up to date, i.e., �Q is defined as
Qi = Q(D), Qi+1 = Q(D + ΔD). As the main goal is
to find the most efficient incremental plan, we set c̃ to be the
cost of Pi+1, i.e., the execution cost at ti+1. (For a formal
definition, see c̃v in Sect. 6.2.) Note that if Q involves mul-
tiple tables and we want to use different incremental plans
for updates on different tables, we can optimize multiple IQP
problems by setting ΔD to the delta data on only one of the
tables at a time.

Progressive Data Warehouse (PDW-PD). We model this sce-
nario by choosing �T as physical time points of the planned
incremental runs. Note that we only require the incremental
plan to deliver the results defined by the original analysis
job Q at the last run, that is, at the scheduled deadline of
the job, without requiring output during the early runs. Thus,
�Q = [∅, . . . ,∅, Q]. We set c̃ as a weighted sum of the costs
of all plans in P (see c̃w(O) in Sect. 6.2).

2.2 Plan space and search challenges

Weelaborate different plans to answer the query inExample 1
using thePDW-PD definition. Suppose the query summary is
originally scheduled at t2, but the progressive data warehouse

Fig. 2 a Data-arrival patterns of sales and returns, b results of
sales_status and summary at t2, c incremental results of sales_status
produced byIM-1at t1 and t2, and d incremental results of sales_status
produced by IM-2at t1, t2

decides to schedule an early execution at t1 on partial inputs.
Assume the records visible at t1 and t2 in sales and returns
are those in Fig. 1a. In this IQP problem, we have �T = [t1, t2]
and �Q = [∅, q],whereq is the summary query, �D is shown in
Fig. 1a, and c̃ is the cost function that takes the weighted sum
of the resources used at t1 and t2. Many existing incremental
methods (e.g., view maintenance, stream computing, mini-
batch execution [3,5,14,20]) can be used here. Consider two
common methods IM-1and IM-2.

Method IM-1 treats sales_status and summary as views,
and uses incremental computation to keep the views up to
date with respect to the data seen so far. The incremental
computation is done on the delta input. For example, the
delta input to sales at t2 includes tuples {o5, o6, o7}. Fig-
ure1c depicts sales_status’s incremental outputs at t1 and t2,
respectively, where # = +/− 1 denote insertion or deletion,
respectively. Note that a returns record (e.g., o2 at t2) can
arrive much later than its corresponding sales record (e.g.,
the shaded o2 at t1). Therefore, a sales record may be output
early as it cannot join with a returns record at t1, but retracted
later at t2 when the returns record arrives, such as the shaded
tuple o2 in Fig. 1c.

Method IM-2 can avoid such retraction during incremental
computation. Specifically, in the outer join of sales_status,
tuples in sales that do not join with tuples from returns for
now (e.g., o2, o3, and o4) may join in the future, and thus are
held back at t1. Essentially the outer join is computed as an
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inner join at t1. The incremental outputs of sales_status are
shown in Fig. 1d.

In addition to these two, there are many other methods as
well. Generating one plan with a high performance is non-
trivial due to the following reasons.

(1) The optimal incremental plan is data dependent, and
should be determined in a cost-based way. In the run-
ning example, IM-1computes 9 tuples (5 tuples in the
outer join and 4 tuples in the aggregate) at t1, and 10
tuples at t2. Suppose the cost per unit at t1 is 0.2 (due
to fewer queries at that time), and the cost per unit at t2
is 1. Then, its total cost is 9 × 0.2 + 10 × 1 = 11.8.
IM-2computes 6 tuples at t1, and 11 tuples at t2, with
a total cost of 6 × 0.2 + 11 × 1 = 12.2. IM-1is more
efficient, since it can do more early computation in the
outer join, and more early outputs further enable sum-
mary to do more early computation. On the contrary, if
retraction is often, say, with one more tuple o4 at t2, then
IM-2is more efficient, as it costs 12.2 versus 13.8 of
IM-1. This is because retraction wastes early compu-
tation and causes more re-computation. Notice that the
performance difference of these two approaches can be
arbitrarily large.

(2) The entire space of possible plan alternatives is very
large.Different parts within a query can choose different
incremental methods. Even if early computing the entire
query does not pay off, we can still incrementally exe-
cute a subquery. For instance, for the left-outer join in
sales_status, we can incrementally shuffle the input data
once it is ingested without waiting for the last time. IQP
needs to search the entire plan space ranging from the tra-
ditional batch plan at one end to a fully incrementalized
plan at the other.

(3) Complex temporal dependencies between different incre-
mental runs can also impact the plan decision. For
instance, during the continuous ingestion of data, query
sales_status may prefer a broadcast join at t1 when the
returns table is small, but a shuffled hash join at t2 when
the returns table gets bigger. But the decision may not be
optimal, as shuffled hash join needs data to be distributed
by the join key, which broadcast join does not provide.
Thus, two join implementations between t1 and t2 incur
reshuffling overhead. IQP needs to jointly consider all
runs across the entire timeline.

Such complex reasoning is challenging, if not impossible,
even for very experienced experts. To solve this problem,
we offer a cost-based solution to systematically search the
entire plan space to generate an optimal plan. Our solution
can unify different incremental computation techniques in a
single plan.

3 The TIPmodel

The core of incremental computation is to deal with relations
changing over time, and understand how the computation on
these relations can be expanded along the time dimension.
In this section, we introduce a formal theory based on the
concept of time-varying relation (TVR) [5,8,41], called the
TVR-based incremental query planning (TIP) model. The
model naturally extends the relational model by considering
the temporal aspect to formally describe incremental execu-
tion. It also includes various data-manipulation operations on
TVRs, as well as rewrite rules of TVRs in order for a query
optimizer to define and explore a search space to generate an
efficient incremental query plan. To the best of our knowl-
edge, the proposed TIP modelis the first one that not only
unifies different incremental computation methods, but also
can be used to develop a principled cost-based optimization
framework for incremental execution. We focus on defini-
tions and algebra of TVRs in this section, and dwell on TVR
rewrite rules in Sect. 4.

3.1 Time-varying relations

Definition 1 A time-varying relation (TVR) R is a mapping
from a time domain T to a bag of tuples belonging to a
schema.

A snapshot of R at a time t , denoted Rt , is the instance of
R at time t . For example, due to continuous ingestion, table
sales (S) in Example 1 is a TVR, depicted as the blue line in
Fig. 3. On the line, Tables 1, 2 show the snapshots St1 and
St2 , respectively. Traditional data warehouses run queries on
relations at a specific time, while incremental execution runs
queries on TVRs.

Definition 2 (Querying TVR) Given a TVR R on time
domain T , applying a query Q on R defines another TVR
Q(R) on T , where [Q(R)]t = Q(Rt ),∀t ∈ T .

In other words, the snapshot of Q(R) at t is the same
as applying Q as a query on the snapshot of R at t . For
instance, in Fig. 3, joining two TVRs sales (S) and returns
(R) yields a TVR (S ��lo R), depicted as the green line.
Snapshot (S ��lo R)t1 is shown as Table 3, which is equal
to St1 ��lo Rt1 . We denote left-outer join as ��lo, left-anti
join as ��la , left-semi-join as ��ls , and aggregate as γ . For
brevity, we use “Q” to refer to the “TVR Q(R)” when there
is no ambiguity.

3.2 Basic operations on TVRs

Besides as a sequence of snapshots, a TVR can be encoded
from a delta perspective using the changes between two snap-
shots. We denote the difference between two snapshots of
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Fig. 3 Example TVRs and their relationships

TVR R at t, t ′ ∈ T (t < t ′) as the delta of R from t to t ′,
denoted ΔRt ′

t , which defines a second-order TVR.

Definition 3 (TVR difference)ΔRt ′
t defines a mapping from

a time interval to a bag of tuples belonging to the same
schema, such that there is a merge operator “+” satisfying
Rt + ΔRt ′

t = Rt ′ .

Table 4 in Fig. 3 shows Δ(S ��lo R)
t2
t1 , which is the delta

of snapshots (S ��lo R)t1 and (S ��lo R)t2 . Here, multiplici-
ties (#) represent insertion and deletion of the corresponding
tuple, respectively. The merge operator + is defined as addi-
tive union on relations with bag semantics, which adds up
the multiplicities of tuples in bags.

Interestingly, a TVR can have different snapshot/delta
views. For instance, the delta Δγsum

t2
t1 can be defined differ-

ently as Table 5 in Fig. 3. Here, the merge operator+ directly
sums up the partial SUM values (the gross attribute) per cate-
gory. For category c1, summing up the partialSUM’s in γsum t1
and Δγsum

t2
t1 yields the value in γsum t2 , i.e., 280+ (− 15) =

265. To differentiate these two merge operators, we denote
the merge operator for S ��lo R as +#, and the merge opera-
tor for γsum as +sum. This observation shows that the way to
define TVR deltas and the merge operator + is not unique.
In general, as studied in previous research [32,54], the differ-
ence between two snapshots Rt and Rt ′ can have two types:

(1) Multiplicity Perspective. Rt and Rt ′ may have different
multiplicities of tuples. Rt may have less or more tuples
than Rt ′ . In this case, the merge operator (e.g., +#) com-
bines the same tuples by adding up their multiplicities.

(2) Attribute Perspective. Rt may have different attribute val-
ues in some tuples compared to Rt ′ . In this case, themerge
operator (e.g., +sum) groups tuples with the same pri-
mary key, and combines the delta updates on the changed
attributes into one value. Aggregation operators usually
produce this type of snapshots and deltas. Formally, dis-
tributed aggregation in data-parallel computing platforms
is often modeled using four methods [53]:

1. Initialize: It is called once before any data is sup-
plied with a given key to initialize the aggregate state.

2. Iterate: It is called every time a tuple is provided with
a matching key to combine the tuple into the aggregate
state.

3. Merge: It is called every time when combining two
aggregate states with the same key into a single aggregate
state.

4. Final: It is called at the end on the final aggregate state
to produce a result.

The snapshots/deltas are the aggregate states computed
using Initialize and Iterate on partial data; the
merge operator +γ is defined using Merge; at the end,
the attribute-perspective snapshot is converted by Final to
produce the multiplicity-perspective snapshot, i.e., the final
result.1 Note that for aggregates such asMEDIANwhose state
needs to be the full set of tuples, Iterate and Merge
degenerate to no-op.

Furthermore, for some merge operator +, there is an
inverse operator −, such that Rt ′ − Rt = ΔRt ′

t . For instance,
the inverse operator −sum for +sum is defined as taking the
difference of SUM values per category between two snap-
shots.

4 TVR rewrite rules

Rewrite rules expressing relational algebra equivalence are
the key mechanism that enables traditional query optimiz-
ers to explore the entire plan space. As TVR snapshots and
deltas are simply static relations, traditional rewrite rules still
hold within a single snapshot/delta. However, these rewrite
rules are not enough for incremental query planning, due to
their inability to express algebra equivalence between TVR
concepts.

To capture this more general form of equivalence, in this
section, we introduce TVR rewrite rules in the TIP model,
focusing on logical plans. We propose a trichotomy of TVR
rewrite rules, namelyTVR-generating rules, intra-TVR rules,
and inter-TVR rules, and show how to model existing incre-

1 Note that Final also needs to filter out empty groups with zero
contributing tuples. We omit this detail for simplicity.
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mental techniques using these three types of rules. This
modeling enables us to unify existing incremental techniques
and leverage them uniformly when exploring the plan space;
it also allows IQP to evolve by adding newTVR rewrite rules.

4.1 TVR-generating and intra-TVR rules

Most existing work on incremental computation revolves
around the notion of delta query that can be described as
Eq. (1) below.

Q (Rt ′) = Q
(
Rt + ΔRt ′

t

)
= Q(Rt ) + dQ

(
Rt ,ΔRt ′

t

)
(1)

Intuitively, when an input delta ΔRt ′
t arrives, instead of

re-computing the query on the new input snapshot Rt ′ , one
can directly compute a delta update to the previous query
result Q(Rt ) using a new delta query dQ. Essentially, Eq. (1)
contains two key parts—the delta query dQ and the merge
operator +, which correspond to the first two types of TVR
rewrite rules, namely TVR-generating rules and intra-TVR
rules.

TVR-Generating Rules. Formally, TVR-generating rules
define for each relational operator on a TVR, how to com-
pute its deltas from the snapshots and deltas of its input
TVRs. In other words, TVR-generating rules define dQ for
each relational operator Q such that ΔQt ′

t = dQ(Rt ,ΔRt ′
t ).

Many previous studies on deriving delta queries under differ-
ent semantics [10,11,14,20,21] fall into this category. Some
example TVR-generating rules used by IM-1in Example 1
are shown as follows:

Δ(S ��lo R)
t2
t1

= ΔS+
��

lo Rt2 + St2��ΔR+

+ (St1 − ΔS−)��ls(ΔR−
��

la Rt2) − ΔS−
��

lo Rt1

+ (St1 − ΔS−)��ls(ΔR−
��

la Rt2) − ΔS−
��

lo Rt1 , (2)

Δγ (S��
lo R)

t2
t1 = γ (Δ(S��

lo R)
t2
t1). (3)

The rules for left-outer join (Eq. 2) and aggregate (Eq. 3)
are from [21] and [20], respectively. In the rules, we useΔS−
andΔR− to denote deletions in the delta, andΔS+ andΔR+
to denote insertions in the delta for simplicity. In Eq. (2), for
brevity, padding nulls tomatch outer join’s schema is omitted
in Figs. 4, 6. This padding can simply be implemented using
a project operator. The blue lines in Fig. 4 demonstrate these
TVR-generating rules in a plan space.

Intra-TVR Rules. Intra-TVR rules define the conversions
between snapshots and deltas of a single TVR. As in Eq. (1),
the merge operator + defines how to merge Q’s snapshot Qt

and delta ΔQt ′
t into a new snapshot Qt ′ . Other examples of

intra-TVRrules include rules that take the difference between

4 5

2 3

Fig. 4 Examples ofTVR-generating and Intra-TVRrules. Equation (2):
incrementally compute the delta of S ��lo R. Equation (3): incremen-
tally compute the delta of γ (S ��lo R) from the delta of S ��lo R.
Equations (4) and (5): merge a snapshot at t1 and a delta to a generate
a new snapshot at t2

snapshots/deltas if the merge operator+ has an inverse oper-
ator −, e.g., Rt ′ − Rt = ΔRt ′

t . In Fig. 4, the intra-TVR rules
by IM-1in Example 1 are marked as red lines. These rules
are shown as follows:

(S��
lo R)t2 = (S��

lo R)t1 +# Δ(S��
lo R)

t2
t1 (4)

γ (S��
lo R)t2 = γ (S��

lo R)t1 +sum Δγ (S��
lo R)

t2
t1 (5)

Note that when merging the snapshot/delta of S ��lo R,
we use+# (Eq. 4), whereas whenmerging the snapshot/delta
of γ (S ��lo R) (query summary), we use +sum (Eq. 5).

4.2 Inter-TVR rules

There are incremental methods that cannot be modeled
using the two aforementioned types of rules alone. The
IM-2approach in Example 1 is such an example. Differ-
ent from IM-1, approach IM-2does not directly deliver
the snapshot of S ��lo R at t1. Instead, it delivers only the
tuples that will not be retracted in the future, essentially the
results of S �� R. At t2 when the data is known to be com-
plete, IM-2computes the rest part of S ��lo R, essentially
S ��la R, then pads with nulls to match the output schema.

This observation shows another family of incremental
methods: without computing Q directly, one can incremen-
tally compute a set of queries {Q′

1, . . . , Q
′
k}, and then apply

another query P on their results to get Q, formally described
as Eq. (6). The intuition is that {Q′

1, . . . , Q
′
k} may be more

amenable to incremental computation:

Q(R) = P(Q′
1(R), . . . , Q′

k(R)). (6)
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Fig. 5 Examples of inter-TVR equivalence rules in IM-2. Each opera-
tor in original query Q is decomposed into two parts: QP (positive-only
updates) and QN (possibly negative updates)

Equation 6 describes a general family of methods: they
all rely on certain rewrite rules describing the equivalence
between snapshots/deltas of multiple TVRs. We summarize
this family of methods into inter-TVR rules. Next we demon-
strate using a couple of existing incremental methods how
they can be modeled by inter-TVR rules.

(1) IM-2: Let us revisit IM-2using the terminology of inter-
TVR rules. Formally, Q = S ��lo R is decomposed into
QP and QN :

QP
t =St �� Rt , QN

t = St ��la Rt ,

Qt =QP
t +# QN

t (7)

where QP is a positive part that will not retract tuples if
both S and R are append-only, whereas QN represents
a part that could retract tuples. The inter-TVR rule in
Eq. (7) states that any snapshot of Q can be decomposed
into snapshots of QP and QN at the same time. Simi-
lar decomposition holds for the aggregate γ in summary
too, just with a different merge operator +sum. Figure5
depicts these rules in a plan space. As it is easier to incre-
mentally compute inner join than left-outer join, QP can
be incrementalized more efficiently than Q with rules in
Sect. 4.1, whereas QN cannot be easily incrementalized,
and is not computed until the completion time.

(2) Outer-join view maintenance (OJV): [33] proposed a
method to incrementally maintain outer-join views.

Query decomposition. Themain idea is to decompose a query
into three parts given an update to a single input table: a
directly affected part QD , an indirectly affected part QI , and
an unaffected part QU . Intuitively, an insertion (deletion) in
the input table will cause insertions (deletions) to QD and
deletions (insertions) to QI , but leave QU unaffected. These
parts are formally defined using the join-disjunctive normal
form of Q and its subsumption graph. We refer the readers

Fig. 6 Supporting outer-join view maintenance. A virtual timepoint t ′
is inserted to model updating one base table at a time. Equations9, 10:
decompose the query into QD and QI . Equations11, 12: compute the
delta of directly affected parts. Equation14: compute the delta of indi-
rectly affected parts

to [33] for details. This decomposition can be expressed using
the following inter-TVR rule:

Qt = QD
t +# QI

t +# QU
t . (8)

Take query sales_status as an example. As the algorithm
in [33] considers updating one input table at a time, we insert
a virtual time point t ′ between t1 and t2 to model that R and
S are updated separately at t ′ and t2. The query sales_status
is decomposed as follows:

QD
t ′ = St ′��Rt ′ , QI

t ′ = St ′��
la Rt ′ , QU

t ′ = ∅,

when R is updated at t ′, (9)

QD
t2 = St2��

lo Rt2 , QI
t2 = ∅, QU

t2 = ∅
when S is updated at t2. (10)

Note that there is no unaffected part in this example. Unaf-
fected parts only exist when a query joins three ormore tables
according to the algorithm in [33].
Delta computation. The outer-join view maintenance algo-
rithm maintains the directly affected parts and the indirectly
affected parts separately.

To compute the delta of the directly affected parts for the
query sales_status, OJVapplies the TVR-generating rules
shown as follows:

ΔQDt ′
t1 = St1 ��lo ΔRt ′

t1

= {(o2, c2, 150, 20,+1)}, (11)

ΔQDt2
t ′ = ΔS

t2
t ′ ��Rt ′

= {(o5, c2, 300, null,+1),

(o6, c1, 150, 15,+1),

(o7, c2, 220, null,+1)}. (12)
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Recall that insertions into the base table will cause inser-
tions to the directly affected parts. Note that the delta tuples
of each QD part are all insertions.

To compute the delta of the indirectly affected parts,
OJVcombines the delta of QD and the previous snapshot of
Q, as shown in Eq. (13). Compared to computing the detla
directly from the base tables, this algorithm can reuse the
already computed delta of the directly affected parts. This
rule can be expressed using the following inter-TVR rule:

ΔQI t
′
t = P(ΔQDt ′

t , Qt ). (13)

In the query sales_status, the delta of the indirectly
affected part at t ′ is computed using a filter and a semi-join,
as shown as follows:

ΔQI t
′
t1 = −[σcost=null(Qt1)��

lsΔQDt ′
t1 ]

= {(o2, c2, 150, null,−1)}. (14)

This is equivalent to incrementally computing the left-anti
join from the base tables. Recall that insertions into the base
tablewill cause deletions to the indirectly affected parts. Note
that the delta tuple o2 of the QI part is a deletion.

Note that for the query sales_status, both IM-2and
OJVleverage the fact that an left-outer join can be decom-
posed into an inner join and a left-anti join. However,
IM-2and OJVuses this decomposition in very different
ways:

– IM-2considers updating all tables at the same time. It
decomposes the query into two parts, QP and QN .

– OJVconsiders updating one base table at a time. It decom-
poses the query into a finer granularity of three parts:
QD

t ′ on updating R, QI
t ′ on updating R, and QD

t2 on
updating S.

– In IM-2, each QP part contains the tuples that will never
be retracted if the base tables are append-only. As an
example, ΔQPt2

t1 contains only two tuples, o2 and o5.
– In OJV, each QD part contains the tuples that are posi-
tive when its corresponding base table is updated. As an
example, ΔQDt2

t ′ contains tuples o5, o6, and o7. Tuples
o5 and o7 could potentially be retracted in the future.

– IM-2computes the delta using theTVR-generating rules.
OJVintroduces a new rule (Eq. 14) to compute the delta
of indirectly affected parts.

(3) Higher-order viewmaintenance: [3,38] proposed ahigher-
order view maintenance algorithm, which can also be
expressed by inter-TVR rules. The main idea is to treat
the deltas of a query Q as another TVR, and continue
applying TVR rewrite rules to incrementally compute it.
Formally, considering a query Q and updates to one of

its inputs R, the algorithm can be summarized as the fol-
lowing inter-TVR rule:

ΔQt ′
t = dQ

(
Rt ,ΔRt ′

t

)
= P

(
Mt ,ΔRt ′

t

)
. (15)

The rule decomposes the delta query into two parts: the
delta update ΔRt ′

t , and an update-independent subquery M
that does not involveΔRt ′

t . The two parts are combined using
a query P to get the delta of Q. IfM is a query involving input
relations other than R, it can be further decomposed again
with respect to updates to each of its input relations according
to Eq. (15), until it becomes a constant. We refer the readers
to [3] for a detailed algorithm. Take the summary query and
updates to sales (S) as an example (we denote returns as R).
Applying Eq. (15), we can decompose it as

ΔQt ′
t = γcategory;SUM(r)(ΔSt

′
t ��lo Mt ),

where Mt = γo_id;total=SUM(cost)(Rt ),

r = IF(total IS NULL, price,−total).

(16)

M essentially preprocesses returns by computing the total
cost per o_id,2 and P computes the gross revenue per cate-
gory by summing up the precomputed total cost in M or the
prices of the new orders added to S. Then, M is material-
ized as a higher-order view and can be further incrementally
maintained with respect to updates to returns by repeatedly
applying the inter-TVR rule to generate higher-order views.

4.3 Putting everything together

The above TVR rewrite rules lay a theoretical foundation for
our IQP framework. Different TVR rules can be extended
individually and work together automatically. For example,
TVR-generating rules can be applied on any TVR created
by inter-TVR rules. By jointly applying TVR rewrite rules
and traditional rewrite rules, we can explore a plan space
much larger than any individual incremental method. Fig-
ure7 shows an example plan space by overlaying Figs. 4, 5.
Any tree rooted at γ (S ��lo R)t2 is a valid incremental plan
for Example 1, e.g., IM-2’s plan is shown in red.

In the next two sections, we discuss how to build an opti-
mizer framework based on the TIP model, including plan
space exploration (Sect. 5) and selecting an optimal incre-
mental plan (Sect. 6).

2 Here, we do not assume o_id as the primary key of returns. Say
returns could containmultiple records for a returned order due to differ-
ent costs such as shipping cost, product damage, and inventory carrying
cost.
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Fig. 7 The combined incremental plan space of Example 1

5 Plan space exploration

In this section, we study how Tempuraexplores the incre-
mental plan space. Existing query optimizers explore plans
only for a specific time. For incremental processing, we need
to explore a much bigger plan space by considering not only
relations at different times, but also transformations between
them. We illustrate how to incorporate the TIP modelinto a
Cascades-style optimizer [18,19], and develop a cost-based
optimizer framework for IQP called Tempura.

We focus on the key adaptations on two main modules.
(1) Memo: it keeps track of the explored plan space, i.e., all
plan alternatives generated, in a succinct data structure, typi-
cally represented as anAND/OR tree, for detecting redundant
derivations and fast retrieval. (2) Rule engine: it manages all
the transformation rules,which specify algebraic equivalence
laws and physical implementations of logical operators, and
monitors new plans generated in the memo. Whenever there
are changes, the rule engine fires applicable transformation

rules on the newly generated plans to add more plan alterna-
tives to the memo.

5.1 Memo: capturing TVR relationships

The memo in the traditional Cascades-style optimizer only
captures two levels of equivalence relationship: logical
equivalence and physical equivalence. A logical equivalence
class groups operators that generate the same result set;
within each logical equivalence class, operators are further
grouped into physical equivalence classes by their physical
properties such as sort order, distribution, etc. The “Tradi-
tional Memo” part in Fig. 8a depicts the traditional memo
of the sales_status query. For brevity, we omit the physi-
cal equivalence classes. For instance, LeftOuterJoin[0,1] has
Groups G0 and G1 as children, and it corresponds to the plan
tree rooted at ��lo. G2 represents all plans logically equiva-
lent to LeftOuterJoin[0,1].

However, the above two equivalences are not enough to
capture the rich relationships in the TIP model. For exam-
ple, the relationship between snapshots and deltas of a TVR
cannot be modeled using the logical equivalence due to the
following reasons. Two snapshots at different times produce
different relations, and the snapshots and deltas do not even
have the same schema (deltas have an extra # column).
To solve this problem, on top of logical/physical equiva-
lence classes, we explicitly introduce TVR nodes into the
memo, and keep track of the following relationships, shown
as the “TempuraMemo” part in Fig. 8a: (1) Intra-TVR rela-
tionship specifies the snapshot/delta relationship between
logical equivalence classes of operators and the correspond-
ing TVRs. The traditional memo only models scanning the

Fig. 8 Examples of the memo structure in Tempura
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full content of S, i.e., St2 , represented by G0, while the
Tempuramemo models two more scans: scanning the par-
tial content of S available at t1 (St1 ), and scanning the delta
input of S newly available at t2 (ΔSt2t1 ), represented by G3
and G5. The memo uses an explicit TVR-0 to track these
intra-TVR relationships. (2) Inter-TVR relationship speci-
fies the relationship between TVRs described by inter-TVR
equivalence rules. For example, the IM-2approach decom-
poses S ��lo R (TVR-2) into two parts QP (TVR-3) and QN

(TVR-4) as in Sect. 3. Note that the above relationships are
transitive. For instance, as G7 is the snapshot at t2 of TVR-
3, and TVR-3 is in turn the QP part of TVR-2, G7 is also
related to TVR-2.

5.2 Rule engine: enabling TVR rewritings

As thememo of Tempurastrictly subsumes a traditional Cas-
cades memo, traditional rewrite rules can be adopted and
workwithoutmodifications. Besides, the rule engine of Tem-
purasupports TVR rewrite rules. Tempuraallows optimizer
developers to define TVR rewrite rules by specifying a graph
pattern on both relational operators and TVR nodes in the
memo. A TVR rewrite-rule pattern consists of two types
of nodes and three types of edges: (1) operator operands
that match relational operators; (2) TVR operands that match
TVR nodes; (3) operator edges between operator operands
that specify traditional parent–child relationship of operators;
(4) intra-TVR edges between operator operands and TVR
operands that specify intra-TVR relationships; and (5) inter-
TVR edges between TVR operands that specify inter-TVR
relationships. All nodes and intra/inter-TVR edges can have
predicates. Once fired, TVR rewrite rules can register new
TVR nodes and intra/inter-TVR relationships.

Figure 9a–b depicts two TVR rewrite rules, where solid
nodes and edges specify the patterns to match, and dotted
ones are newly registered by the rules. In the figures, we also
show an example match of these rules when applied on the
memo in Fig. 8a. Rule 1 is the TVR-generating rule to delta
compute an inner join. It matches a snapshot of an InnerJoin,
whose children L , R each have a delta sibling L ′, R′. The rule
generates aDeltaInnerJoin taking L , R, L ′, R′ as inputs, and
register it as a delta sibling of the original InnerJoin. Rule
2 is an inter-TVR rule of IM-2. It matches a snapshot of a
LeftOuterJoin, whose children L , R each have a QP snapshot
sibling L ′, R′. The rule generates an InnerJoin of L ′ and R′,
and register it as the QP snapshot sibling of the original
LeftOuterJoin.

Figure 8b demonstrates the growth of a memo in Tem-
pura. For each step, we only draw the updated part due to
space limitation. The memo starts with G0 to G2 and their
corresponding TVR-0 to TVR-2. In step 1, we first populate
the snapshots and deltas of the scan operators, e.g., G3 to
G6, and register the intra-TVR relationship in TVR-0 and

Fig. 9 Example TVR rewrite-rule patterns in Tempura

TVR-1. We also populate their QP and QN inter-TVR rela-
tionships as in IM-2(for base tables these relationships are
trivial). In step 2, in Fig. 9b. rule 2 matches the tree rooted
at LeftOuterJoin[0,1] in G2, generates the inner join of G7,
and registers G7 to TVR-3 as the snapshot at t2, and TVR-3
to TVR-2 as QP . In step 3, rule 1 matches InnerJoin[0,1] in
G7 in Fig. 9a and generates DeltaInnerJoin[3,4,5,6] as the
delta of TVR-3. By applying other TVR rewrite rules, we
eventually get the memo in Fig. 8a.

6 Selecting an optimal plan

In this section, we discuss how Tempuraselects an optimal
plan in the explored space. The problem differs from existing
query optimizers in the following ways:

1. In a traditional query plan, all physical operators are
executed at the same time point in a single query. In Tem-
pura, physical operators in an incremental plan might be
executed at different time points. In Sect. 6.1, we discuss
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how to assign a valid execution time point of each phys-
ical operator.

2. Similarly, in a traditional query plan, the cost function
represents the cost of a single time point. In Sect. 6.2, we
discuss how to extend the cost function to consider the
costs at different time points.

3. Finally, an incremental plan often needs tomaintain inter-
mediate states between the executions of different time
points. In Sect. 6.3, we discuss how to find the optimal
states to materialize.

6.1 Time-point annotations of operators

Costing the plan alternatives is not trivial because the tem-
poral dimension is involved. Figure10a depicts one physical
plan rooted at (S ��lo R)t2 , as shown in red in Fig. 7. This
plan only specifies the concrete physical operations taken on
the data, but does not specify when they are executed. Actu-
ally, each operator in the plan usually has multiple choices of
execution time. In Fig. 10a, the time points annotated along-
side each operator shows the possible temporal domain of its
execution. For instance, snapshots St1 and Rt1 are available
at t1, and thus can execute at any time after that, i.e., t1 or
t2. Deltas ΔRt2

t1 and ΔSt2t1 are not available until t2, and thus
any operators taking it as input, including the IncrHashInner-
Join, can only be executed at t2. The temporal domain of each
operator O , denoted t-dom(O), can be defined inductively:
(1) For a base relation R, t-dom(R) is the set of execution
time points that are no earlier than the time point when R
is available. (2) For an operator O with inputs I1, . . . , Ik ,
t-dom(R) is the intersection of its inputs’ temporal domains:
t-dom(R) = ∩1≤ j≤k t-dom(I j ).

To fully describe a physical plan, one has to assign each
operator in the plan an execution time from the corresponding
temporal domain. We denote a specific execution time of an
operator O as τ(O). We have the following definition of a
valid temporal assignment.

Definition 4 (Valid Temporal Assignment) An assignment
of execution time points to a physical plan is valid if and
only if for each operator O , its execution time τ(O) satisfies
τ(O) ∈ t-dom(O) and τ(O) ≥ τ(O ′) for all operators O ′
in the subtree rooted at O .

Fig. 10b demonstrates a valid temporal assignment of the
physical plan in Fig. 10a. At t1, the plan computes HashIn-
nerJoin of St1 and Rt1 , and shuffles St1 and Rt1 to prepare for
IncrHashInnerJoin. At t2, the plan shuffles the new deltas
ΔSt2t1 and ΔRt2

t1 , finishes IncrHashInnerJoin, and unions the
results with that of HashInnerJoin computed at t1. Note that
if an operator O and its input I have different execution time
points, then the output of I needs to be saved first at τ(I ),
and later loaded and fed into O at τ(O), e.g., Union at t2
andHashInnerJoin at t1. The cost of Save and Load needs to

......

(a)

......

P1 P2

(b)

Fig. 10 Examples of a the temporal plan space, andb a temporal assign-
ment for subquery sales_status’s plan

be properly included in the plan cost. It is worth noting that
some operators save and load the output as a by-product, for
whichwe can spare Save and Load, e.g.,Exchange of St1 , Rt1
at t1 for IncrHashInnerJoin.

6.2 Time-point-based cost functions

The cost of an incremental plan is defined under a specific
assignment of execution time points. Therefore, the opti-
mization problem is formulated as: given a plan space, find
a physical plan and temporal assignment that achieve the
lowest cost. In this section, we discuss the cost model and
optimization algorithm for this problem without considering
sharing common sub-plans. We will discuss the problem of
how to decide which states to materialize in Sect. 6.3.

As an incremental plan can span across multiple time
points, the cost function c̃ in an IQP problem (as in Sect. 2.1)
is extended to a function taking into consideration of costs
at different time points. For the cost at each time point, we
inherit the general cost model used in traditional query opti-
mizers, i.e., the cost of a plan is the sum of the costs of all
its operators. Below we give two examples of c̃. We denote
traditional cost functions as c, and ci is the cost at time ti . As
before, c can be a number, e.g., estimatedmonetized resource
cost, or a structure, e.g., a vector of CPU time and I/O.

1. c̃w(O) = ∑
i=1..T wi · ci (O). The extended cost of an

operator is a weighted sum of its cost at each time ti .
For the example setting in Sect. 2.2, w1 = 0.2 for t1 and
w2 = 1 for t2.
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2. c̃v(O) = [c1(O), . . . , cT (O)]. The extended cost is a
vector combining costs at different time points. c̃v can
be compared entry-wise in a reverse lexical order. For-
mally, c̃v(O1) > c̃v(O2) iff ∃ j s.t. c j (O1) > c j (O2) and
ci (O1) = ci (O2) for all i, j < i ≤ T .

Consider the plan in Fig. 10a as an example. To get the result
ofHashInnerJoin at t2, we have two options: (i) compute the
join at t2; or (ii) as in Fig. 10b, compute the join at t1, save the
result, and load it back at t2. Assume the cost of computing
HashInnerJoin, saving the result, and loading it are 10, 5,
4, respectively. Then for option (i) (c1, c2) = (0, 10), for
option (ii) (c1, c2) = (15, 4). Say that we use c̃w as the cost
function. If w1 = 0.6 and w2 = 1 then option (i) is better,
whereas ifw1 = 0.2 andw2 = 1, option (ii) becomes better.
Dynamic programming (DP) used predominantly in exist-
ing query optimizers [18,35,42] also need to be adapted to
handle the cost model extensions. In existing query optimiz-
ers, the DP state space is the set of all operators in the plan
space, represented as {O}. Each operator O records the best
cost of all the subtrees rooted at O . We extend the state space
by considering all combinations of operators and their execu-
tion time points, i.e., {O}× t-dom({O}). Instead of recording
a single optimum, each O records multiple optima, one for
each execution time τ(O), which represents the best cost of
all the subtrees rooted at O if O is generated at τ . During
optimization, the state-transition function is the following:

c̃[O, τ ] = min∀ valid τ j

⎛
⎝∑

j

c̃[I j , τ j ] + cτ (O)

⎞
⎠ . (17)

That is, the best cost of O if executed at τ is the best cost
of all possible plans of computing O with all possible valid
temporal assignments compatible with τ .

We have the following observation of the above DP algo-
rithm: the optimization problem under cost functions c̃w and
c̃v without sharing common sub-plans satisfies the prop-
erty of optimal substructure, and dynamic programming is
applicable. In general, we can apply DP to the optimization
problem for any cost function satisfying the property of opti-
mal substructure.

6.3 Deciding states tomaterialize

In an incremental plan, a delta computation often requires
intermediate states to be saved from earlier computation.
As an example, in Fig. 10b, the incremental hash join at
t2 needs to use the saved intermediate states Shuffle(St1) and
Shuffle(Rt1). However, an alternative plan is to re-compute
these states from base tables instead of reusing material-
ized states. Whether to save the intermediate states or to

re-compute the states needs to be decided in a cost-based
manner.

We model the problem of choosing the optimal inter-
mediate states to materialize as a multi-query optimization
problem by treating the plan at each time point as an inde-
pendent mini-query and finding sharing states between the
mini-queries at different time points. In the example in
Fig. 10, we treat the whole incremental query as two inde-
pendent mini-queries at two time points: query1 computes
the join result at t1 and query2 computes the delta join result
from t1 to t2. These two mini-queries both need the states
Shuffle(St1) and Shuffle(Rt1): query1 uses the states to pro-
duce the hash join result at t1, and query2 uses these states to
compute the incremental hash join result at t2. The parts 1©
and 2© circled in dashed lines in Fig. 10a depict the shareable
candidates. Therefore, computing the shuffle once and mate-
rializing these states once can benefit two reuse opportunities
and reduce the overall cost of the incremental plan. Note
that materializing a state is not always beneficial because the
overhead of materialization might be higher than the cost
of re-computing it. In order to choose the best sub-plans to
materialize, we feed query1 and query2 together to a multi-
query optimization algorithm [30,40,56]. In other words, a
materialized shared sub-plan between two mini-queries Qi

and Q j at two time points of an incremental plan is essen-
tially an intermediate state that is saved by Qi and reused by
Q j .

In this paper, we extend theMQOalgorithm in [30], which
proposes a greedy framework on top of Cascade-style opti-
mizers for MQO. For the sake of completeness, we list the
algorithm in Algorithm 1, by highlighting the extensions
for progressive planning. The algorithm runs in an itera-
tive fashion. In each iteration, it picks one more candidate
from all possible shareable candidates, which if material-
ized can minimize the plan cost (line 4), where best Plan(S)

means the best plan with S materialized and shared. The
algorithm terminates when all candidates are considered or
adding candidates can no longer improve the plan cost. As
IQP needs to consider the temporal dimension, the share-
able candidates are no longer solely the set of shareable
sub-plans, but pairs of a shareable sub-plan s and a choice
of its execution time τ(s). Pair 〈s, τ (s)〉 means computing
and materializing the sub-plan s at time τ(s), which can only
benefit the computation that happens after τ(s). For instance,
considering the physical plan space in Fig. 10a, the sharable
candidates are {〈 1©, t1〉, 〈 1©, t2〉, 〈 2©, t1〉, 〈 2©, t2〉}. The opti-
mizations in [30] are still applicable to Algorithm 1.

As expandedwith execution timeoptions, the enumeration
space of the shareable candidate set becomes much larger
than the original algorithm in [30]. Interestingly, we find that
under certain cost models we can reduce the enumeration
space down to a size comparable to the original algorithm,
formally summarized in Theorem 1. This theorem relies on
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Algorithm1GreedyAlgorithm for ChoosingOptimal States
to Materialize
1: S = ∅
2: C = shareable candidate set consisting of all shareable nodes

and their potential execution time points {〈s, τ (s)〉}
3: while C �= ∅ do
4: Pick 〈s, τ (s)〉 ∈ C that minimizes c̃(best Plan(S′)) where S

′ =
{〈s, τ (s)〉} ∪ S

5: if c̃(best Plan(S′)) < c̃(best Plan(S′)) then
6: C = C − {〈s, τ (s)〉}
7: S = S

′
8: else
9: C = ∅
10: end if
11: end while
12: return S

the fact that materializing a shareable sub-plan at its earliest
possible time subsumes other materialization choices.

Theorem 1 For an extended cost function c̃w satisfyingwi <

w j if i < j , or an extended cost function c̃v satisfying the
property that an entry i has a lower priority than an entry j
if i < j in the lexical order, we only need to consider the ear-
liest valid execution time for each shareable sub-plan. That
is, for each shareable sub-plan s, we only need to consider
the shareable candidate 〈s,min(t-dom(s))〉 in Algorithm 1.

Proof Materializing a shareable sub-plan at its earliest pos-
sible time subsumes other materialization choices, as any
reuse opportunities can always choose between using or not
using the materialized sub-plan. Therefore, the reuse cost of
the shareable sub-plan does not increase. On the other hand,
as the extended cost function strictly prefers an earlier exe-
cution time by assignment resources at an earlier time with
a lower cost, the materialization overhead of the shareable
sub-plan also does not increase. Combining these two points,
one can see the shareable candidate 〈s,min(t-dom(s))〉 sub-
sumes other candidates 〈s, ·〉. ��

7 Integrating into traditional query
optimizers

In this section, we give a detailed specification on how to
integrate Tempurainto a traditional Cascades-style query
optimizer. Specifically, we focus on how to represent TVRs
in the memo structure.

We implemented Tempurabased on Apache Calcite.
Without loss of generality, we use Calcite’s terminologies in
this section: an operator is called a RelNode, and a logically
equivalent group of operators is called aRelSet. ATrait repre-
sents a physical property of physically equivalent classes. On
top of these, Tempuraintroduces a new data structure called
TvrMetaSet to store relevant information about a TVR: the

Fig. 11 Partial memo of subquery sales_status from Example 1 in
Tempura

time domain of the TVR, Intra-TVR relationships, and Inter-
TVR relationships. Next we elaborate more on these using
the subquery sales_status from Example 1 as an example.
TVR Time Points and Intervals By now we used single time
points to identify data versions, in which all (intermediate)
results are computed from input relations all at the version of
the same time point. Whereas in many computing methods,
one need to reason about results computed from input rela-
tions at different time points. For instance in both outer-join
view maintenance and higher-order view maintenance (both
described earlier in Sect. 4.2), to model a partial update of
relation S from t1 to t2 in S ��lo R with R unchanged, we
need to represent the join result of S at t2 and R at t1, or vice
versa.

Consequently, Tempurakeeps track of the time version
of every input relations, respectively, to allow for incre-
mental computation using combinations of input relations
at different time points. For a query with k input relations
[I1, . . . , Ik], we define a TVR time point to be a vector
�t = [t1, . . . , tk]. Each time point in the vector represents
the time version of the k-th input relation. For example, for a
query with two input relations R and S, the TVR time point
[t R1 , t S2 ] represents a state where the result is computed from
R in version t1 and S in version t2. A TVR time interval is
defined as (�t, �t ′), the interval between two TVR time points
�t = [t1, . . . , tk] and �t ′ = [t ′1, . . . , t ′k], where ∀i t i ≤ t ′i .
When the context is clear, we use �t to denote the TVR time
point �t = [t, · · · , t]. For instance in Fig. 11, all five TVRs
contain two TVR time points �t1 = [t R1 , t S1 ] and �t2 = [t R2 , t S2 ].
Time Domain of a TVR The time domain T of a TVR (intro-
duced earlier in Sect. 3.1) defines relevant time points of
the TVR. Specifically, it consists of a list of valid TVR
time points and intervals, specified in a data structure called
TvrMetaSetType. Tempuraallows a TVR to have an incom-
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plete time domain, which means not all TVR time points and
intervals are required to be present in a TVR.

With two input relations R and S and three time points
of [t1, t2, t3], Fig. 12 visualizes two types of TVR meta set:
Default and Partial, where each blue point is a valid TVR
time point and each yellow arrow is a valid TVR time interval
in the time domain of the TVR.

1. The Default TvrMetaSetType only allows TVR time
points where all input relations are at the same time
version. On top of that, it only allows TVR time inter-
vals involving adjacent TVR time points to avoid a
combinational number of delta intervals. For example
in Fig. 12a, there are three TVR time points [t R1 , t S1 ],
[t R2 , t S2 ], and [t R3 , t S3 ], and two intervals ([t R1 , t S1 ], [t R2 , t S2 ])
and ([t R2 , t S2 ], [t R3 , t S3 ]). This policy has a complexity
linear to number of time points, which helps limit explo-
ration space and improve optimization speed.

2. ThePartial TvrMetaSetType of certain input relation (e.g.
R or S) only allows TVR time intervals where only the
corresponding input relation is updated. For example,
assuming R is always updated before S in very time
step, then Fig. 12b shows the partial TvrMetaSetType
on updating relation R only, where only two TVR time
intervals ([t R1 , t S1 ], [t R2 , t S1 ]) and ([t R2 , t S2 ], [t R3 , t S2 ]) are
allowed. Similarly, Fig. 12c shows thepartialTvrMetaSet-
Type on updating relation S only. Note that although each
partial type is incomplete, the two partial types can work
together to constitute a valid update path from [t R1 , t S1 ]
to [t R3 , t S3 ]. This policy is useful for incremental compu-
tation algorithms that only consider updating one input
relation at a time, such as outer-join view maintenance
and higher-order view maintenance.

In the memo example in Fig. 11, all TvrMetaSets are of
the Default TvrMetaSetType, with two TVR time points �t1
and �t2, and one interval (�t1, �t2).
Intra-TVR traitsA TVR has a mapping from its time domain
T tomany relations, e.g. snapshots and deltas. A TvrMetaSet
stores these Intra-TVR relationships using Intra-TVR traits,
which are bidirectional edges between a TvrMetaSet and
a RelSet. For example, Fig. 11 plots Intra-TVR traits in
blue dotted lines, which connect TvrMetaSets to their related
RelSets. Custom Intra-TVR traits can be defined and used by
various incremental computing methods. Earlier in Sect. 3,
we described the multiplicity and attribute perspectives of a
TVR. They corresponds to the example Intra-TVR traits as
follows.

1. SetSnapshot.This Intra-TVR trait represents that aRelSet
is amultiplicity-perspective snapshot at a TVR time point
of the connecting TvrMetaSet. The specific TVR time
point is stored in the SetSnapshot trait.

(a) (b) (c)

Fig. 12 TvrMetaSetType Examples: a Default, b Partial updating R
only, and c Partial updating S only. Each blue point is a valid TVR time
point and each yellow arrow is a valid TVR time interval in the time
domain of the TVR

2. SetDelta. This Intra-TVR trait represents that a RelSet is
a multiplicity-perspective delta for a TVR time interval.
The specific TVR time interval is stored in the Intra-TVR
trait. Additionally, SetDelta has two variations, namely
positive-only SetDelta and retractable SetDelta. Each
variation has a different merge function (see Definition 3
in Sect. 3.2) for snapshots and deltas. For retractable
delta, the information of the specific column that encodes
insertion or deletion is stored in the SetDelta trait.

3. ValueSnapshot. This Intra-TVR trait represents that a
RelSet is an attribute-perspective snapshot at a TVR time
point. An attribute-perspective snapshot is produced by
an aggregation operator. It can be converted to a Set-
Snapshot by applying theFinal aggregation function (see
Sect. 3.2). The information needed for the conversion is
stored in the ValueSnapshot trait, including the group-by
keys and the Final aggregation functions.

4. ValueDelta. This Intra-TVR trait represents that a RelSet
is an attribute-perspective delta for a TVR time interval.
Similar to SetDelta, there are positive-only ValueDelta
and retractable ValueDelta. Similar to ValueSnapshot,
necessary information on conversions to SetSnapshot is
also stored in ValueDelta.

Inter-TVR Trait. A TvrMetaSet stores Inter-TVR relation-
ships using Inter-TVR traits, which are directed edges
between two TvrMetaSets. Custom Inter-TVR traits can be
defined to annotate the information needed by an incremen-
tal computation algorithm. For example in Fig. 11, the green
QP and QN edges are two Inter-TVR traits used in the
IM-2approach.
TVR Equivalence and Anchor Time Point. Tracing equivalent
operators and merging them into logically equivalent classes
is an important step in Cascades-style optimizers. Similarly,
we need to merge two TVRs if they are found equivalent.

Ifweknow twoTVRsare equivalent, then the snapshots on
each timepoint are also equivalent.However, ifweonly know
that two snapshots at a specific time point are equivalent, we
cannot infer if their corresponding TVRs are equivalent. The
following example shows such a scenario. Consider a simple
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query σ(S) with two time points t1 and t2. The query has
two TVRs: the TVR of the scan operator S and the TVR of
the filter operator σ(S). Suppose the base table S is empty
at t1. Applying a filter on an empty table is also empty. The
optimizer detects the logical equivalence between the two
empty snapshots St1 and σ(St1). Apparently, this does not
imply that the two TVRs S and σ(S) are equivalent at all
time points. At t2, data might arrive at the base table S and
the two snapshots St2 and σ(St2) are not equivalent anymore.
The rule for discovering whether a table is empty at a specific
time point is a time-dependent rule, which means it does not
apply at all time points.

A strict way to detect if two TVRs are equivalent is to
check that at all the time points, the corresponding snap-
shots of the twoTVRs are equivalent. However, this detection
mechanism is impractical in a real-world query optimizer
implementation for two reasons. First, TVR equivalence can
only be detected after regular logical rewriting rules are fired
on all the time points. During this process, many TVRs
could be created but their equivalence cannot be detected.
The redundant TVRs can slow down the query optimization
speed. Second, the optimizer cannot guarantee that all snap-
shots at all time points can be fully generated because some
operators in the memo might be pruned during the search
process. In this case, some TVR equivalence might never be
detected.

We introduce a practical mechanism of detecting TVR
equivalence by designating a special anchor time point. Tem-
puraonly allows time-independent rules to be fired on this
special time point. In this way, any snapshots at the anchor
time point can be generalized to all time points in the TVR.
If two snapshots at the anchor points are equivalent, their
corresponding TVRs are also equivalent. In the meantime,
we still allow time-independent rules to fire at all other time
points, increasing the potential to find a better plan.

Formally, two TVRs R and R′ are equivalent if they have
the same time domain and their snapshots are the same at all
valid TVR time points.

R′ = R ⇐⇒ T (R′) = T (R) ∧ R′
t = Rt ,∀t ∈ T .

If R′
t is equivalent to Rt at a specific time point t , it does not

imply that both TVRs are identical.

∃t ∈ T s.t . R′
t = Rt �⇒/ R′ = R.

Tempuradesignates one time point as the special anchor time
point t� of a TVR. The anchor time point must ensure that all
rules applied at the anchor time point are time-independent
and can be generalized to all time points of a TVR.

R′
t� = Rt� ∧ T (R′) = T (R) �⇒ R′ = R.

Tempurachooses to use the last time point in the time domain
as the anchor time point because it produces the final result.
Two TVRs are considered equivalent if and only if (1) they
share the same logical equivalent class for the anchor snap-
shot and (2) they have the same TvrMetaSetType. Note that
for the same RelSet at the anchor time, Tempuraallows mul-
tiple TVRs with different TvrMetaSetTypes to co-exist.

8 Improving query optimization speed

As Tempuraexplores a much bigger plan space, if imple-
mented naively, incremental planning can be much slower
than traditional query planning. In this section, we dis-
cuss several techniques to speed up the optimization pro-
cess, which help Tempuraachieve comparable optimization
latency as traditional optimizers.

8.1 Translational symmetry of TVRs

Generating a plan for many time points imposes a challenge
for the optimization speed. With an increasing number of
time points, the memo size and the overhead of the rule pat-
ternmatching andfiring grows larger.Wehave an observation
that the TVR rules generate the same patterns when applied
on operators of different time points of the same TVR. For
instance, in Fig. 9b, if we let t ′ = t1 instead, L ′ (R′) matches
G0 (G1) instead of G3 (G4), andwe generate the InnerJoin in
G7 instead of G8. In other words, InnerJoin[0,1] in G7 and
InnerJoin[3,4] are translation symmetric, modulo the fact
that G0, G1, and G7 (G3, G4, and G8) are all snapshot t1 (t2)
of the corresponding TVRs.

Most traditional rewriting rules, such as filter pushdown,
are time-independent and have the samebehavior on different
time points. By leveraging this symmetry, instead of repeat-
edly firing these rules on all snapshots/deltas of the same set
of TVRs, we can apply them on just one snapshot/delta and
copy the structures to the rest times. This helps eliminate the
expensive process of patternmatching and applying the same
rule behavior on different time points in the memo. We first
present the process of using translational symmetry to copy
the memo, then discuss how Tempurahandles rules that are
non-translational, e.g. time-dependent.
Template Copying. Before the copying starts, we need to
first decide a template and a copy mapping. Out of all time
points and intervals, we first choose one consecutive pair
of a time point t for snapshot and a time interval (t, t ′) for
delta as the copying template. Then, we define a copy map-
ping from the template time point/interval to the rest of time
points/intervals. For example, if there are three time points
[t1, t2, t3] and two time intervals [(t1, t2), (t2, t3)], we could
choose t1 as the template time point and (t1, t2) as the tem-
plate time interval. The copying mapping for time point is
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t1 �→ {t2, t3} and the mapping for time interval is (t1, t2) �→
{(t2, t3)}. Next,we explain the template-generation phase and
the copying phase step-by-step.

1. Template-Generation Phase. We seed the TVRs of the
leaf operators (usually Scan operators) with the snap-
shot/delta in the template time point/interval. We run the
optimizer to populate thememo.Note that all rules except
some non-translational symmetric rules discussed later
are enabled. This includes the majority of TVR rewrite
rules, traditional logical and physical rules. After the rule
firing is completed, we record the template operator tree
for copying in the next phase.

2. Copying Phase. Next, we disable the pattern match-
ing and firing of the rules enabled earlier and copy
the template operators to their corresponding mapped
time points/intervals. We traverse the template operator
tree bottom up in topological order. For each template
operator, we find its time point/interval using the intra-
TVR link, then copy the operator to all other time
points/intervals according to the mapping. After each
operator is copied, we record their copied instances at
each time point so that the copy of its parent operator can
locate the corresponding input.

Non-Translational Symmetric Rules. There are two kinds of
non-translational rules that are not fired in the copying pro-
cess: time-dependent rules and rules across more than two
time points beyond the template.

Time-dependent rules generates operators that based on
time-specific properties that vary across time. For exam-
ple, an input relation being empty at time point t1 does
not imply that the relation will be empty for at all times.
If an empty pruning rule is applied to an operator at t1,
it cannot be generalized to the entire TVR. As a result,
time-dependent rules cannot be fired when constructing the
template. Tempuradefers the firings of time-dependent rules
after the copying phase has ended. Recall that the rule engine
performs rule matching for every structrual change in the
memo. Tempuraalways enables such rules for patternmatch-
ing during the template-generation and copying phase, but
any successful match is put into a separate queue for deferred
firing after the copying phase has ended.

Rules across many time points can match multiple oper-
ators beyond the template time point/interval. For example,
an union merge rule that combines multiple union operators
at more than two time points into a single union operator.
Such rules might match and generate new patterns during
the copy. These rules are also enabled for pattern matching,
but deferred for firing after the copying phase.

By leveraging translational symmetry, Tempurais able to
scale with many time points because most traditional and
TVR rules only need to be matched and fired on one single

time point and interval.Moreover, Tempuraensures the com-
pleteness and correctness of thememo by a special process of
matching and deferred firing of non-translational symmetric
rules.

8.2 Pruning plan exploration space

Pruningnon-promising alternatives.There aremultipleways
to compute a TVRs snapshot or delta, within which certain
ways are usually more costly than others. We can prune
the non-promising alternatives. For instance, to compute a
delta, one can take the difference of two snapshots, or use
TVR-generating rules to directly compute from deltas of
the inputs. Based on the experience of previous research on
incremental computation [31], we know that the plans gen-
erated by TVR-generating rules are usually more efficient.
Therefore, for operators that are known to be easily incre-
mentally maintained, such as filter and project, we assign a
lower importance to intra-TVR rules for generating deltas to
defer their firing. Once we find a delta that can be generated
through TVR-generating rules, we skip the corresponding
intra-TVR rules altogether. To implement this optimization,
we can give this subset of intra-TVR rules a lower priority
than all other rules, and thus other TVR rewrite rules and
traditional rewrite rules will always be ranked higher. Each
intra-TVR rule also has an extra skipping condition, which
is tested to see whether the target delta is already generated
before firing the rule. If so, the rule is skipped.
Guided exploration. Inside a TVR, snapshots and deltas
consecutive in time can be merged together, leading to com-
binatorial explosion of rule applications. However, themerge
order of these snapshots and deltas usually do not affect the
cost of the final plan. Thus, we limit the exploration to a
left-deep merge order. Specifically, we disable merging of
consecutive deltas, and only allow patterns thatmerge a snap-
shot with its immediately consecutive delta. In this way, we
always use a left-deep merge order.

8.3 Optimization of the rule engine

In a traditional cascades-style optimizer, the memo structure
is anAND-OR tree.Most rewriting rules are of tree structures
specifying the parent–child relationship of a few operators.
However in Tempura, the memo becomes a complex graph.
The TVR rules are also graphs that need to match multiple
operators, TvrMetaSets, and several types of edges among
them. Thus, we upgraded the rule engine from supporting
tree matching to graph matching. Note that the upgraded
rule API is fully backward compatible, all existing rules can
work as is.

For example, the TVR-generating rule in Fig. 9a matches
fiveoperators, threeTvrMetaSets, and seven edges.The inter-
TVR rule in Fig. 9bmatches five operators, fiveTvrMetaSets,
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and nine edges. Rule matching in Tempurais a subgraph iso-
morphismproblem thatmatches the given rule pattern against
the memo graph. The subgraph isomorphism problem is NP-
complete and could bring a major performance overhead. In
this section,wefirst explain the general rule-matching andfir-
ing process in Tempura, then show how Tempuraspeeds up
the rule-matching process using techniques including index-
ing, pre-compliation, and multiple heuristics on match order.

In Tempura, the rule-matching process is triggered by
any structural changes in the memo, for example, adding
a new operator, TvrMetaSet, or edge, including intra/inter-
TVRedges and edges between operators.Merging ofRelSets
or TvrMetaSets is also a structural change. For each rule,
Tempuratries to match it starting from the location of the
triggering change. As shown in Fig. 9b starting from the
example triggering TvrMetaSet vertex, Tempurafollows a
depth first search (DFS) matching order in the rule pattern.
Whenever the matching fails at one point, it backtracks and
moves on to the next candidate in the traversal. Upon finding
a successful match, the rule with all matched vertices and
edges are added to a rule queue, waiting to be applied.
Pre-compilation of Rule Patterns. Tempuraoffline analyzes
thematching patterns of all user-provided rules and compiles
them into data structures specific for subgraph matching.
The compilation phase happens before optimizing a query
and it consists of two major steps. In the first step, it deter-
mines a linear matching order with respect to each vertex
and edge as the triggering point. Whenever a rule pattern
is triggered during runtime, the matching process just fol-
lows the pre-determined matching order without the need to
compute the matching order every time. We will cover how
Tempuradetermines the match order later in this subsection.
In the second step, it analyzes the predicates for all vertices
and edges, as well as the predicates on multiple vertices or
edges, and pre-process and simplify the matching conditions
as much as possible.
Determining Matching Order. The matching order has a
major impact on optimizer speed and we want to choose
an order that can quickly prune the search space and abort as
early as possible upon match failure. Next, we list the differ-
ent options that can lead to different match orders when the
backtracking process reaches each type of vertices and edges.
We also present the heuristics of our choice to determine a
matching order and give the rationale behind the heuristics.

1. Operator Vertex: At an operator vertex, we can either
match connected operators or connected TVRs. Tem-
puraprioritizes on matching operators. It first follows
Calcite’s traversal order for matching the operator tree,
which is to travel up to root and then a pre-order traver-
sal for the rest of the operators. When the operator tree
is fully matched, it then follow the intra-TVR edges to
expand the search to connected TVRs. The rationale is

Fig. 13 A possible matching order of the rule in Fig. 9b starting from
a TVR vertex

that operators are associated with many predicates that
are less likely to find a match and thus can abort early.

2. TVR Vertex: At a TVR vertex, we can either match oper-
ators belong to this TVR, or other connected TVRs via
inter-TVR edges. Tempuraprioritizes checking the inter-
TVR trait and the connected TVRs. After matching all
inter-TVR edges and connected TVRs, we then traverse
the inter-TVR edges to match operators. This is because
inter-TVR traits are less likely to find a match, which can
cause the rule matching to terminate earlier.

3. Intra-TVR Edge: At an Intra-TVR edge, which connects
an operator and aTVR,weneed to choose thematch order
when both connected operator and TVR are not matched
yet, i.e., the Intra-TVR edge itself is the triggering point.
In this case, we can either match the connected opera-
tor first, or the connected TVR first. Tempuraprioritizes
on matching the connected TVR because this enables
expanding the inter-TVR edges faster.

4. Inter-TVR Edge: At an Inter-TVR edge, which connects
two TVRs, we need to prioritizewhich side tomatch first.
Tempuracompares the number of inter-TVR edges of the
two TVRs, and prioritizes the TVRwith more inter-TVR
edges.

Figure 13 shows a possible match order of the example
rule starting from a TVR vertex.

9 Tempura in action

In this section, we discuss a few important considerations
when applying Tempurain practice.
Dynamic re-optimization of incremental plans. We have
studied the IQP problem assuming a static setting, i.e., in
( �T , �D, �Q, c̃) where �T and �D are given and fixed. In many
cases, the setting can be much more dynamic where �T
and �D are subject to change. Tempuracan be adapted to a
dynamic setting using re-optimization. Generally, an incre-
mental plan P = [P1, . . . , Pi−1, Pi , . . . , Pk] for �T =
[t1, . . . , ti−1, ti , . . . , tk] is only executed up to ti−1, after

123



Tempura: a general cost-based optimizer framework for incremental data processing...

which �T and �D change to �T ′ = [ti ′ , . . . , tk′ ] and �D′ =
[Di ′ , . . . , Dk′ ]. Tempuracan adapt to this change by re-
optimizing the plan under �T ′ and �D′. We want to remark that
during re-optimization, Tempuracan incorporate the mate-
rialized states generated by P1, . . . , Pi−1 as materialized
views. In this way, Tempuracan choose to reuse the materi-
alized states instead of blindly re-computing everything.
Data statistics estimation. IQP scenarios usually involve
planning for future logical times (e.g., IVM-PD) or physi-
cal times (e.g., PWD-PD) as described in Sect. 2.1, for which
estimating the data statistics becomesvery challenging. Since
these scenarios typically involve recurring queries, we can
use historical data-arrival patterns to estimate future data
statistics. Having inaccurate statistics is not a new prob-
lem to query optimization, and many techniques have been
proposed [52] to tackle this issue. Note that we can always re-
optimize the plan when we find that the previously estimated
statistics is not accurate.Also, techniques such as robust plan-
ning [7,17,51] can be adopted to IQP too. These are out of
the scope of this paper.

10 Experiments

In this section, we study the effectiveness and efficiency of
Tempura. We used the query optimizer of Alibaba Cloud
MaxCompute [28], which was built on Apache Calcite
1.17.0 [23], as a traditional optimizer baseline. We imple-
mented Tempuraon the optimizer of MaxCompute. We
integrated four commonly used incremental methods into
Tempurausing TVR rewrite rules: (1) IM-1 in Sect. 2.2, (2)
IM-2 in Sect. 2.2 and Sect. 4.2, (3) OJV the outer-join view
maintenance algorithm in Sect. 4.2, (4) HOV the higher-
order view maintenance algorithm in Sect. 4.2. By default,
Tempurajointly considered all four methods in planning. In
the experiments, we used Tempurato simulate each method
by turning off the inter-TVR rules of the other methods.

We used two incremental processing scenarios, PDW-PD
and IVM-PD described in Sect. 2.1, to demonstrate Tem-
pura. PDW-PD uses the cost function c̃w(O) (in Sect. 6.2),
where ci was a linear functionof the estimatedCPU/IO/memo
ry/network costs, and wi ∈ [0.25, 0.3] for early runs and
wi = 1 for the last run.

We used the TPC-DS benchmark [22] (1T B) to study
the effectiveness (Sect. 10.1) and performance (Sect. 10.3)
of Tempura. To further demonstrate the effectiveness of
the plans, in Sect. 10.2 we used two real-world analysis
workloads consisting of recurrent daily jobs from Alibaba’s
enterprise data warehouse, denoted as W-A and W-B.

Table 1 shows statistics of the two workloads.
Query optimization was carried out single-threaded on a

machine with an Intel Xeon Platinum 8163 CPU@2.50GHz
and 512GB memory, whereas the generated query was exe-

Table 1 Statistics of two workloads at Alibaba

# Queries Avg Avg # Queries # Queries
# Joins # Aggregates (≥ 1 join) (≥ 2 joins)

W-A 274 1.14 1.77 167 83

W-B 554 1.18 1.99 357 144

cuted on a cluster of thousands ofmachines sharedwith other
production workloads.

10.1 Effectiveness of IQP

We first evaluated the effectiveness of IQP by comparing
Tempurawith four individual incremental methods IM-1,
IM-2, OJV, and HOV, in both the PDW-PD and IVM-PD
scenarios. We controlled and varied two factors in the exper-
iments: (1)Queries.Wechosefive representative queries cov-
ering complex joins (inner-, left-outer-, and left-semi-joins)
and aggregates. (2) Data-arrival patterns. We controlled the
amount of input data available in each incremental run by
varying the ratio r = |D1|/|D2|, where D1 is the amount
of input data arriving at the first time point, and D2 is the
amount of newly arrived input data at the second time point.
We chose four data-arrival patterns. Two data-arrival pat-
terns have append-only input data: delta-big (r = 1) and
delta-small (r = 4). We varied the amount of input data
arriving at the second time point to test the effect of differ-
ent delta sizes. Two data-arrival patterns have retractions:
delta-R(r = 2) and delta-RS(r = 2). Delta-R has retractions
in the sales table, whereas delta-RS has retractions in both
sales and returns tables. Queries with retractions at the base
tables are usually more expensive to incrementally compute
because additional states need to be saved to handle retrac-
tions. Note that the IM-2method cannot support these two
arrival patterns because it cannot handle retractions from the
base tables. As the accuracy of cost estimation is orthogonal
to Tempura, to isolate its interference, we mainly compared
the estimated costs of plans produced by the optimizer, and
reported them in relative scale (dividing them by the corre-
sponding costs of IM-1) for easy comparison. We reported
the real execution costs as a reference later, and the trend was
consistent with the planner’s estimation. Due to space limit,
we only report the most significant entries in the cost vector
of c̃v for IVM-PD.
IVM-PD. We first fixed the data-arrival pattern to delta-big
and varied the queries. The optimal plan costs are reported
in Fig. 14a. As shown, different queries prefer different
incremental methods. For example, IM-1outperformed both
OJVandHOVfor complex queries such as q35. This is because
OJVcomputed QI by left-semi joining the delta of QD with
the previous snapshot (Sect. 4.2), and a bigger delta incurred
a higher cost of computing QI . Whereas for simpler queries
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Fig. 14 a, b The optimal estimated costs of incremental plans in
IVM-PD for different queries and data-arrival patterns. c, d The optimal
estimated costs of incremental plans in PDW-PD for different queries,

data-arrival patterns, and cost weights. e, f The PDW-to-TDW ratio of
the real total CPU cost and CPU cost at 24:00 for the data warehouse
workloads, respectively

Fig. 15 a, b The optimal real CPU costs of different incremental plans
in IVM-PD for different queries and data-arrival patterns. c, d The
optimal real CPU costs of different incremental plans in PDW-PD for
different queries, data-arrival patterns and cost weights. e, f The state
sizes of different incremental plans in IVM-PD for different queries and

data-arrival patterns. g The plan quality of Tempuraunder inaccurate
cardinality estimation. h The comparison between TDW and PDW on
the CPU cost of all queries in W-A and W-B, and i a detailed comparison
of 30 randomly sampled queries in W-A and W-B
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such as q80, OJVdegenerated to a similar plan as IM-1,
and thus had similar costs. Note that HOVcosts much less
than both OJVand IM-1, due to the fact that the maintained
higher-order views avoid many repeated joins (e.g., cata-
log_sales inner joiningwarehouse, item, and date_dim) as
in OJVand IM-1.

Next we chose q10 as a complex query with multiple
left-outer joins, and varied the data-arrival patterns. The
results are plotted in Fig. 14b. Again, the data-arrival pat-
terns affected the preference of incremental methods. For
example, IM-2could not handle input data with retractions.
Compared to delta-big, HOVand OJVstarted to outperform
IM-1by a large margin in delta-small, as both of them could
use different join orders when applying updates to differ-
ent input relations, and joining a smaller delta earlier could
significantly reduce the join cost.

For both experiments, Tempuraconsistently delivered
the best plans. For q40 in Fig. 14a and the delta-small
case in Fig. 14b, Tempuradelivered a plan 5-10X better
than others. Tempuracombines all three of HOV, IM-2and
IM-1to generate a mixed optimal plan, and thus leveraged
all their advantages. For example, in q40 Tempuraused
a similar incremental plan to HOV, but Tempuraused the
IM-2approach to join the higher-order views M and Δ− R,
and applied IM-1to incrementalize the QN part in IM-2.
PDW-PD. For the PDW-PD scenario, we conducted the same
experiments as in IVM-PD, and in addition tried different
weights used in the cost functions (w1 = 0.3 vs. w1 = 0.7).
We have similar conclusions as in IVM-PD, and the results
are reported in Fig. 14c,d. We make two remarks. (1) Since
PDW-PD did not require any outputs at earlier runs, Tem-
puraautomatically avoided unnecessary computation, e.g.,
IM-2avoided computing the QN part, and thus performed
better for q10, q35, q40 than in IVM-PD. (2) The cost func-
tion can also affect the choice of the optimizer. For instance,
in Fig. 14d, q10 preferred HOVtoOJVwhenw1 = 0.3, but the
other way when w1 = 0.7. This was because with the cost
of early execution increasing, it was less preferable to store
many intermediate states as in HOV. Tempuraexploited this
fact and adjusted the computation in each run, and moved
some early computation from the first incremental run to the
second.
Real CPUCosts. We reported the real CPU costs in Fig. 15a–
d for the experiments in Fig. 14a–d. The CPU costs are in the
unit of number_of_cores·time_of_each_core_in
_minutes (“CPU·Min” in short). As an example, if a
query runs with 2 cores for 3min, the total CPU cost is 6
CPU·Min’s. In the PDW-PD experiments (Fig. 15c, d), the
CPU costs were weighted with the cost function in PWD-PD.

Note that Fig. 15a, c is plotted in log scale due to the huge
differences in CPU costs for different queries. As we can see,
the real CPU costs were agreed with the planner’s estimation
(Fig. 14a–d) pretty well. Some of the real costs were dif-

ferent from the estimated ones because of the inaccuracy of
the cost model. But note that Tempuraconsistently delivered
the best plans with the lowest CPU consumption across all
experiments.
Real Wall-clock Execution Time. We reported the real wall-
clock execution time (in seconds) in Fig. 16 in the IVM-PD
scenario. Due to the huge differences in execution time for
different queries, each query is plotted with a separate scale
on the y-axis. We noticed that the initial runs of a few jobs
failed and the jobswere restarted by the fault-tolerancemech-
anism of the platform. To make the comparison fair, we only
counted the execution time of successful runs and excluded
the additional time of the failed runs. The real wall-clock
execution time was mostly similar to the real CPU costs
(Figs. 15a–b). Tempurastill consistently delivered the low-
estwall-clock execution time across all experiments. Someof
the wall-clock execution times were different from the CPU
costs because some plans were easier to be parallelized and
the query optimizer assigned a higher degree of parallelism
to such queries. In such a case, although the wall-clock exe-
cution time was lower, the total CPU costs could be similar
as more cores were used.
State Sizes. In this set of experiments, we study the stor-
age costs of materialized states between Tempuraand each
individual incremental methods. We first fixed the data-
arrival pattern to delta-big and tested different queries under
IVM-PD settings, respectively. The results are reported in
Fig. 15e. As shown, for most queries, the sizes of states mate-
rialized by Tempurawere smaller than or comparable to each
individual incremental algorithms. This is due to the fact that
Tempurais able to reuse the shuffled data as the stateswithout
incurring additional storage overheads (see Sect. 6.1). Thus,
we further reported the sizes of the shuffled data reused by
Tempurain the figures. Next we chose query q10 and varied
the data-arrival patterns. The results are reported in Fig. 15f.
Again, the storage costs of Tempurawere lower than or com-
parable to that of each individual incremental algorithms.
Sensitivity to Inaccurate Estimates. Next, we evaluated the
sensitivity of Tempurato inaccurate cardinality estimation.
We used q10 in the IVM-PD scenario. We gave Tempurathe
estimation of delta-small when running q10 with input delta-
big, and gave the estimation of delta-big when running q10
with input delta-small. Figure15g reports the real CPU costs.
For delta-big, Tempurawith the inaccurate estimation ran
slower compared to Tempurawith accurate estimation. This
is expected because Tempurachose a plan that is optimal to
the inaccurate cost model. Nevertheless, Tempurawas still
faster than IM-1, OJV, HOV, and comparable to IM-2. For
delta-small, inaccurate estimation had a small impact on exe-
cution time, and Tempurawas still faster than each individual
incremental method.
Conclusion. The optimal incremental plan is affected by
many factors and does need to be searched in a cost-based
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Fig. 16 a The wall-clock execution time in IVM-PD for different queries (corresponding to Fig. 15a). b The wall-clock execution time in IVM-PD
for different data-arrival patterns for TPC-DS q10 (corresponding to Fig. 15b)

way. Tempuracan consistently find better plans than incre-
mental methods alone.

10.2 Case study: progressive data warehouse

Tovalidate the effectiveness of Tempurain a real application,
we conducted a case study of the PDW-PD scenario using
two real-world analysis workloads W-A and W-B at Alibaba.
We compared the resource usage of these workloads in two
ways: (1) Traditional (TDW), where we ran the workloads
at 24:00 according to a schedule using the plans generated by
a traditional optimizer; and (2) Progressive (PDW), where
besides 24:00, we also early executed the workloads at 14:00
and 19:00 (chosen to simulate the observed cluster usage
pattern) using the plans generated by Tempura.

Figure 14e shows the real CPU cost of executing the
workloads (scored using the cost function in the PDW-PD
setting), where we plotted the cumulative distribution of the
ratio between the CPU cost in PDW versus that in TDW. We
can see that PDW delivered better CPU cost for 80% of the
queries. For about 60% of the queries, PDW was able to cut
the CPU cost by more than 35%. Remarkably, PDW deliv-
ered a total cost reduction of 56.2% and 55.5% for W-A and
W-B, respectively. Note that Tempurasearched plans based
on the estimated costs which could be different from the real
execution cost. As a consequence, for some of the queries
(less than 10%) we see more than 50% cost increase. Accu-
racy of cost estimation is not within the scope of the paper.
We further reported the PDW-to-TDW ratio of the CPU cost
at 24:00 in Fig. 14f, as this ratio indicated the resource reduc-
tion during the “rush hours.” As shown, for both workloads,
PDW reduced the resource usage at peak hours for over 85%
of the queries, and for over 70% of the queries we can see
significant reduction of more than 25%.

We also reported the absolute values of CPU costs of
W-A and W-B. However, as W-A and W-B have 274 and 554
queries each, it is not realistic to show all of them. Instead

we reported the total CPU cost breakdowns for TDW and
PDW in Fig. 15h. Specifically for PDW, we reported the
absolute values of CPU costs at each time, and the total CPU
costs weighted according to the cost function in PDW-PD.
As we can see, Tempuraindeed picked better plans with less
resource consumption: PDW saved 38.7% and 32.6% CPU
costs compared to TDW for W-A and W-B, respectively. On
the other hand, with incremental computation, PDW had rel-
atively low overheads compared to TDW, 19.6% and 37.6%
for W-A andW-B, respectively. ThePDWoverheads are com-
puted by summing up the absolute values of CPU costs at
each time, minus the CPU costs of TDW. We further ran-
domly selected 15 queries from W-A and W-B, respectively,
and reported their CPU costs in TDW and PDW in Fig. 15i.
Again, for most queries PDW reduced the CPU costs by a
significant amount.

10.3 Performance of IQP

Next, we evaluated the performance of Tempura. IQP has
two salient characteristics: (1) In Plan-Space Exploration
(PSE) phase, IQP explores a larger plan space. (2) IQP has
a new State Materialization Optimization (SMO) phase to
decide the intermediate states to share. We will present per-
formance results on these two phases.

We used PDW-PD as the IQP problem definition. Unless
otherwise specified, we set | �T | = 3. We tested Tempuraon
the TPC-DS queries. Besides the overall performance study,
we also present a detailed study on four aspects:

(1) Query complexity: How does Tempuraperform when
queries become increasingly complex, e.g., with more joins
or subqueries? (2) Size of IQP: How does Tempuraperform
when | �T | changes? (3) Number of incremental methods:
Howdoes Tempuraperformwhen users integratemore incre-
mental methods into it? (4) Optimization breakdown: How
effective are the speed-up optimizations in Section 8?
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Fig. 17 a Overall planning performance on TPC-DS between tra-
ditional and incremental query planning. b Impact of the query
complexity, c, d the size of IQP, and e, f the number of incremental

methods on the planning performance. g Effectiveness of the speed-up
optimization techniques. Note that the selected queries are ordered by
their query complexity(as listed in Table 2)

Fig. 18 Real resource consumption of Tempura’s plan as in Fig. 17a on 1T TPC-DS benchmark

To study the above four aspects, we selected ten repre-
sentative TPC-DS queries with different numbers of joins,
aggregates, and subqueries. The selected queries are shown
in Table 2.
Overall Planning Performance. We first studied the overall
planning performance by comparing Tempurawith tradi-
tional planning. Figure17a shows the end-to-end planning
time on all TPC-DS queries. As shown, although planned a
much bigger plan space, Tempurastill delivered high plan-
ning performance: IQP finished within 3 seconds for 80%
queries, and for all queries finished within 14 seconds. For
over 80% queries, the IQP optimization time was less than
24X of the traditional planning time. Even though slower

than traditional planning at optimization time, IQP generated
much better incremental plans that brought significant bene-
fit in resource usage and query latency.We can further reduce
the planning time by adopting a parallel optimizer [43].

As a reference, we also reported the real CPU cost used
by TDW, the CPU costs saved by PDW compared to TDW,
and the planning time in Fig. 18. We can see that for most
queries, the CPU time on planning was 2-3 orders of magni-
tude smaller than the saved CPU costs. This shows that the
planning cost is negligible compared to the execution cost.
Thus, the benefit of a better plan outweighs the extra time
spent on planning.
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Table 2 Statistics of selected representative queries

Query Q22 Q20 Q43 Q67 Q27 Q99 Q85 Q91 Q5 Q33

# Joins 2 2 2 3 4 4 6 6 7 9

# Aggregates 1 1 1 1 1 1 1 1 4 4

# Sub-Queries 0 0 0 2 0 0 0 0 7 7

Query Complexity. To study the impact of query complexity,
we reported the planning time breakdown on the selected
TPC-DS queriesin Fig. 17b. As shown, the planning time
increased when the query complexity increased, because the
plan space grew larger for complex queries. The time spent
on PSE was less than that spent on SMO in general, and also
grew with a slower pace. This shows that query complexity
has a smaller impact on PSE.
Size of IQP. To study the impact of the size of the planning
problem, we gradually increased the number of incremental
runs planned from 3 to 9, and reported the time on PSE and
SMO in Fig. 17c, d. As depicted, the time on PSE stayed
almost constant as the size of IQP changed. For example,
when the number of incremental runs grew 3X, the time for
q33 only slightly increased by 20%. This was mainly due to
the effective speed-up optimization techniques introduced in
Sect. 8. In comparison, the SMO time increased superlinearly
with increase in number of incremental runs, due to the time
complexity of the MQO algorithm we chose [30].
Number of IncrementalMethods. To study the impact ofmore
incremental methods, we gradually added methods IM-1,
IM-2, HOVand OJVinto Tempura. Figure17f, g show the
time on PSE and SMO, respectively. As illustrated, the time
on both PSE and SMO increased with more incremental
methods, due to the increased plan space. There are two inter-
esting findings. (1) The PSE time did not grow linearly with
the number of incremental methods, but rather the the plan
space size that each method newly introduces. For example,
the increase of PSE time at adding HOVwas bigger than that
at adding OJV. This was because both HOVand OJVupdate
a single relation at a time, which are very different from
IM-1and IM-2that update all relations each time. (2) The
number of incremental methods had less impact than the size
of the IQP problem,which can be observed on the SMO time.
This is because the plan space explored by different incre-
mental methods often have overlaps, whereas the plan spaces
of different incremental runs do not.
Exploration Optimization Breakdown. We evaluated the
effectiveness of the speed-up optimizations of exploring the
plan space discussed in Sect. 8, i.e., translational symme-
try (TS), pruning non-promising alternatives (PNA), and
guided exploration (GE). Figure17g reports the PSE times
of different combinations of the speed-up optimizations.
We compared the implementations with no optimization
(Baseline), with each individual optimization (Baseline+TS,

Fig. 19 Time breakdown of three steps in the memo-copying process:
template generation, template copying, and firing non-translational
symmetric rules after copying

(a)

Heuristic 1 (baseline)
Heuristic 2
Heuristic 3
Heuristic 4
Heuristic 5 (used by Tempura)

(b)

Fig. 20 Effect of different rule engine optimization techniques on over-
all planning performance: a pre-compilation of rule patterns and b
different match-order heuristics

+PNA, +GE), and with all three optimizations (Tempura).
The optimizations together brought up to 20X speed-up,
among which the most effective ones were PNA and TS,
bringing 5-12X and 1.5-2.5X improvements each.
Effect of Exploiting TVR Translational Symmetry. We evalu-
ated the memo-copying process using the TVR translational
symmetry in Sect. 8.1. Figure19 shows the breakdown of
planning time of the three steps used in the copying process,
with two time points in the initial template-generation phase,
and three additional time points in the template-copying
phase.We have the following observations: (1) the time of the
template-generation phase varied and it was determined by
the complexity of each query; (2) the time spent on copying
the template to three additional time points was much less
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Table 3 Configurations of different match-order heuristics used in Fig. 20b

Operator Vertex prioritize
TVR/operator

TVR Vertex prioritize
TVR/operator

Intra-TVR edge prioritize
TVR/operator

Inter-TVR edge prioritize
TVR w/ more/less edges

1 TVR Operator Operator Less

2 Operator Operator Operator Less

3 Operator TVR Operator Less

4 Operator TVR TVR Less

5 Operator TVR TVR More

than generating the template on two time points; and (3) the
time taken by firing non-translational symmetric rules after
the copying were usually small, but it took a long time in
a few queries. This is because the new operators generated
by non-translational symmetric rules further triggered many
traditional rewrite rules such as enforcer rules.
Effect of Rule Engine Optimizations. We study the effect of
the optimization techniques to speed up the rule-matching
process of the rule engine in Sect. 8.3. Figure20a shows the
benefit of pre-compilation of rule patterns. We observed that
the pre-compilation optimization introduced performance
gains on almost all queries tested.Recall that pre-compilation
can avoid re-computing the match order on each rule fir-
ing. Since the number of rule firings was very large, this
optimization cumulatively saved a large amount of time.
Figure20b shows the effect of different match-order heuris-
tics on the optimization speed. The specific configuration of
each heuristic can be found in Table 3. We had the follow-
ing observations. (1) The experiment showed that different
match orders indeed had different impacts on the optimiza-
tion speed. For example, in query 85, heuristic 1 was about
30% slower than heuristic 5. Therefore, it is important to
choose a good match order to accelerate the optimization.
(2) The best heuristic was query-dependent and there was no
single heuristic match order that performs the best in all the
cases. The heuristic we chose out-performs the baseline for
most queries. Based on these observations, Tempuraallows
a developer to tune the match-order heuristics based on the
query and workload.

11 Related work

Incremental Processing. There are rich research works
on incremental processing, ranging from incremental view
maintenance, streamcomputing, to approximate query answer-
ing and so on. Incremental view maintenance has been
studied under both the set [10,11] and bag [14,20] semantics,
for queries with outer joins [21,33], and using higher-order
maintenance methods [3]. Previous studies mainly focused
on delta propagation rules for relational operators. Stream
computing [1,16,37,47] adopts incremental processing and

sublinear-space algorithms to process updates and deltas.
Many approximate query answering studies [2,6,15] focused
on constructing optimal samples to improve query accuracy.
Proactive or trigger-based incremental computation tech-
niques [13,54] were used to achieve low query latency. These
studies proposed incremental techniques in isolation, and do
not have a general cost-based optimization framework. In
addition, they can be integrated into Tempura.
Query Planning for Incremental Processing. Previous work
studied some optimization problems in incremental compu-
tation. Viglas et al. [48] proposed a rate-based cost model
for stream processing. The cost model is orthogonal to
Tempuraand can be integrated. DBToaster [3] discussed a
cost-based approach to deciding the views to materialize
under a higher-order view maintenance algorithm. Tang et
al. [45] focused on selecting optimal states to materialize
for scenarios with intermittent data arrival. They proposed
a DP algorithm for selecting states to materialize given a
fixed physical incremental plan and a memory budget, by
considering future data-arrival patterns. These optimization
techniques all focus on the optimal materialization problem
for a specific incremental plan or incremental method, and
thus are not general IQP solutions. Tang et al. [44] discussed
the idea of eagerly (or lazily) executing parts of a query that
is more (or less) amenable to incremental execution. Tem-
puracan also support this style of execution in the PDW-PD
setting, where the final results are delivered only at the last
run. At earlier runs, the optimizer can choose to incremen-
tally execute only a sub-part of the query based on cost. In
fact, we often observed this behavior in the PDW-PD setting
in the experiments. [44] analyzes the cost of incremental exe-
cution based on the concept of incrementability. This can be
adopted in Tempuraas a new cost function following the dis-
cussion in Sect. 6.2.

Flink [25] uses Calcite [9] as the optimizer to support
stream queries, which only provides traditional optimiza-
tions on the logical plan generated by a fixed incremental
method, but cannot combine multiple incremental methods,
nor consider correlations between incremental runs. On the
contrary, Tempuraprovides a general framework for users to
integrate various incremental methods, and searches the plan
space in a cost-based approach.
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SemanticModels for Incremental Processing.CQL[5] exploi
ted the relational model to provide strong query semantics
for stream processing. Sax et al. [41] introduced the dual
streaming model to reason about ordering in stream process-
ing. The key idea behind [5,41] is the duality of relations
and streams, i.e., time-varying relations can be modeled as
a sequence of static relations, or a sequence of change logs.
The recent work [8] proposed to integrate streaming into the
SQL standard, and briefly mentioned that TVRs can serve as
a unified basis of both relations and streams. However, their
models do not include a formal algebra and rewrite rules on
TVRs. To the best of our knowledge, our TIP modelfor the
first time formally defines an algebra on TVRs, providing a
principled way to model different types of snapshots/deltas
and operators between them. The trichotomy of TVR rewrite
rules subsumes many existing incremental methods, laying
a theoretical foundation for Tempura.

12 Conclusion

In this paper, we proposed a theory called TIP modelto for-
mallymodel incremental processing in itsmost general form,
and based on it developed a novel principled cost-based
optimizer framework Tempurafor incremental data process-
ing. Tempuranot only unifies various existing techniques to
generate an optimal incremental plan, but also allows the
developer to add their rewrite rules. We conducted thorough
experimental evaluation of Tempurain various incremental
query scenarios to show its effectiveness and efficiency.

We implemented Tempurabased on Apache Calcite and
it is open sourced at [26]. Tempurais also being incorpo-
rated into Apache Calcite codebase as a configurable feature
at [27].
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